Author: Lana Konnova

Situation 2: Reducing the Fraction

Prompt (given by Jeanne Shimizu)

A student found out that in case of the fraction $\frac{26}{65}$ the "cross - reducing" can lead to the right answer: $\frac{26}{65}=\frac{2}{5}$

The question was " At what condition does it work?"

Commentary

The foci consider several important aspects of the fractions. Focus 1 looks at students' possible misunderstanding of the place value of the numbers. Focus 2 looks at the students' possible misunderstanding of the symbolic representation of the product operation. Focus 3 examines the condition when the "cross - reducing" leads to the right answer in case of two-digital numbers in the numerator and denominator.

Mathematical Foci

Mathematical Focus 1
 It is important for students to understand the place value of the numbers

A positional notation or place-value notation system is a number system in which each position is related to the next by a common ratio, called the base of that number system.
In the decimal number system base equals 10 . Each place has a value of 10 times the place to its right.

Mathematical Focus 2

It is important for students to understand the symbolic representation of operation of multiplication.
1.Multiplication is written using the multiplication sign " \times " between the terms
2.Multiplication is sometimes denoted by either a middle dot
3. In algebra, multiplication that involves variables is often written as a juxtaposition (e.g. xy for x times y or 5 x for five times x). However, in the case of a juxtaposition numbers must be
surrounded by parentheses (e.g. 5(2) or (5)(2) for five times two). Otherwise, 52 represents the two-digital number.

Mathematical Focus 3

It is possible to find the conditions at which the "cross - reducing" leads to the right answer in case of two-digital numbers in the numerator and denominator.

One can represent the fraction that contains two digital numbers in the numerator and denominator using the variables m, n, and $l(\mathrm{n}=0, \ldots 9, \mathrm{~m}=0, \ldots 9, l=1, \ldots 9)$. In this case, the statement that the "cross - reducing" leads to the right answer, leads to the equation:
$\frac{10 m+n}{10 n+l}=\frac{m}{l}$, then
$10 \frac{n}{l}-\frac{n}{m}=9$
After solving this equation in natural numbers ($\mathrm{n}=0, \ldots 9, \mathrm{~m}=1, \ldots 9, l=1, \ldots 9$), and considering the case when $\mathrm{m}=0$ in $\left(^{*}\right)$, one can get the answer to the problem (*)

1. $\mathrm{n}=\mathrm{m}=l(\mathrm{n}=1, \ldots 9, \mathrm{~m}=1, \ldots 9, l=1, \ldots 9)$
2. $\mathrm{n}=6, \mathrm{~m}=2, l=5$
3. $\mathrm{n}=6, \mathrm{~m}=1, l=4$
4. $\mathrm{n}=0, \mathrm{~m}=0, l=1, \ldots 9$
